Ion fluxes through nanopores and transmembrane channels.
نویسندگان
چکیده
We introduce an implicit solvent Molecular Dynamics approach for calculating ionic fluxes through narrow nanopores and transmembrane channels. The method relies on a dual-control-volume grand-canonical molecular dynamics (DCV-GCMD) simulation and the analytical solution for the electrostatic potential inside a cylindrical nanopore recently obtained by Levin [Europhys. Lett. 76, 163 (2006)]. The theory is used to calculate the ionic fluxes through an artificial transmembrane channel which mimics the antibacterial gramicidin A channel. Both current-voltage and current-concentration relations are calculated under various experimental conditions. We show that our results are comparable to the characteristics associated to the gramicidin A pore, especially the existence of two binding sites inside the pore and the observed saturation in the current-concentration profiles.
منابع مشابه
Origin of the Shape of Current-Voltage Curve through Nanopores: A Molecular Dynamics Study
Ion transports through ion channels, biological nanopores, are essential for life: Living cells generate electrical signals by utilizing ion permeation through channels. The measured current-voltage (i-V) relations through most ion channels are sublinear, however, its physical meaning is still elusive. Here we calculated the i-V curves through anion-doped carbon nanotubes, a model of an ion cha...
متن کاملSolid-state nanopores for biosensing with submolecular resolution.
Biological cell membranes contain various types of ion channels and transmembrane pores in the 1-100 nm range, which are vital for cellular function. Individual channels can be probed electrically, as demonstrated by Neher and Sakmann in 1976 using the patch-clamp technique [Neher and Sakmann (1976) Nature 260, 799-802]. Since the 1990s, this work has inspired the use of protein or solid-state ...
متن کاملNanopores with controlled profiles in track-etched membranes
The production of the track-etched membranes is well known in membrane science. Latent ion tracks are the result of the passage of swift ions through solid matter, they can be etched selectively in many materials. As a result, conical, cylindrical or other shape channels can be obtained. The increasing interest in polymer track-etched membranes with nano-channels is connected with the developme...
متن کاملSelf-assembling subnanometer pores with unusual mass-transport properties.
A long-standing aim in molecular self-assembly is the development of synthetic nanopores capable of mimicking the mass-transport characteristics of biological channels and pores. Here we report a strategy for enforcing the nanotubular assembly of rigid macrocycles in both the solid state and solution based on the interplay of multiple hydrogen-bonding and aromatic π-π stacking interactions. The...
متن کاملMultiplexed parallel single transport recordings on nanopore arrays.
We introduce a nanofabricated silicon chip for massively multiplexed analysis of membrane channels and transporters in suspended lipid membranes that does not require any surface modification or organic solvent. Transport processes through single membrane complexes are monitored by fluorescence. The chip consists of an array of well-defined nanopores, addressing an individual pyramidal back-ref...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 85 3 Pt 1 شماره
صفحات -
تاریخ انتشار 2012